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ABSTRACT
The convergence of generative AI and web search is reshaping
problem-solving for programmers. However, the lack of understand-
ing regarding their interplay in the information-seeking process
often leads programmers to perceive them as alternatives rather
than complementary tools. To analyze this interaction and explore
their synergy, we conducted an interview study with eight experi-
enced programmers. Drawing from the results and literature, we
have identified three major challenges and proposed three decision-
making stages, each with its own relevant factors. Additionally, we
present a comprehensive process model that captures programmers’
interaction patterns. This model encompasses decision-making
stages, the information-foraging loop, and cognitive activities dur-
ing system interaction, offering a holistic framework to comprehend
and optimize the use of these convergent tools in programming.

CCS CONCEPTS
• Software and its engineering → Software design tradeoffs; •
Information systems → Information retrieval; • Computing
methodologies→ Cognitive science.
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1 INTRODUCTION
Programmers often invest time in seeking and making sense of
external information to tackle programming tasks [4, 26]. Tradi-
tionally, programmers frequently engage in web searches to resolve
coding challenges, such as debugging. They rely on search engines
to find relevant information, error messages, and solutions shared
by others in the programming community [17, 44]. However, recent
advancements in Large Language Models (LLMs) have introduced
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an alternative information-seeking approach, consisting of gener-
ating solutions via natural language prompts. With the ability to
generate customized responses for various programming scenarios,
programmers turn to generative AI for tasks such as producing
boilerplate code or implementing external APIs.

This raises questions about the role and coexistence of these
distinct information-seeking tools in programmer workflows. Re-
search comparing the two found that programmers often prefer
generative AI over web searches when dealing with low-level code
implementation due to their accessibility and adaptability [2], but
continue depending on web searches to explore diverse solutions
and to acquire domain-specific terms that aid them in translating
their vague goals into concrete prompts for generative AI [2, 45, 52].
Another line of research seeks to integrate the functionality of
these two methods by adopting retrieval-augmented generation
(RAG) [23]. However, simply combining these two features contra-
dicts programming practices, as programmers do not always accept
the top search results. Instead, they rely on signals, such as source
credibility, to assess the suitability of the results [26, 30].

While prior research has highlighted programmers’ interest in
combining the use of these two tools [52], the lack of a clear under-
standing of their intersection often leads programmers to consider
them as substitutes rather than synergistic. Further, due to the inher-
ent uncertainty and variance of both web search [4] and generative
AI [32], programmers often resort to opportunistically choosing
between the two tools. To address these challenges, it is essen-
tial to understand the decisions that programmers make during the
information-seeking process. This understanding will inform future
designs that consider interactions with both tools.

We conducted retrospective interviews with eight programmers
experienced in both web search and generative AI for information
seeking, to learn about their common practices when using both
tools for programming problem-solving. Based on the results, we
identified key challenges and three major decision stages, each
with its own set of factors influencing the decisions. We synthe-
size these findings with existing literature and propose a process
model by incorporating the interaction with generative AI into the
information-foraging theory from Pirolli et al. [39]. This model
outlines key stages of activities throughout the interaction, offering
insights for future integrated designs that aim to assist program-
mers in effectively utilizing both web search and generative AI in
their information-seeking processes.

2 RELATEDWORK
To investigate the synergy between web search and generative
AI, we conducted a review of programmers’ information-seeking
processes for both tools.
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2.1 Information Seeking and Knowledge
Reusing fromWeb

The dynamics of utilizing web resources are multifaceted in the
field of web information seeking and knowledge reuse. Program-
mers actively seek relevant information across various domains
as described in the Information Foraging Theory (IFT) [39], such
as code and search results [22, 38]. They not only gather informa-
tion pertinent to their current issues [3, 15, 48] but also synthesize
this information to create structured knowledge, aiding in their
decision-making [18, 19, 27]. A prevailing challenge is comprehend-
ing the rationale behind previous programmers’ decisions due to
inadequate or outdated documentation [16, 46], which underscores
the importance of effective knowledge documentation and retrieval.
In this context, knowledge reuse becomes significant, as it entails
not just generating new knowledge but applying existing knowl-
edge to problem-solving [10, 14, 24, 25, 53]. Building upon this
previous literature, our study focuses on the intersection between
information-seeking via the web and generative AI, particularly in
terms of understanding, translating, and reusing knowledge from
one tool to another.

2.2 Generative AI-assisted Problem-Solving
Similar to web searches, using generative AI for programming
problem-solving also involves information-seeking and sense-making
processes, yet with distinct workflows and challenges. Programmers
using generative AI in their problem-solving often encounter limi-
tations within the linear question-answer paradigm, which hinder
exploration and the ability to revisit previous responses [2, 43, 54].
LLMs are also capable of generating plausible results for NL prompts
that may not necessarily be aligned with the current usage scenario,
which exacerbates friction [13, 28, 56, 58]. For instance, writing
“Scrape this web page with JavaScript” can already generate a pro-
gram without syntax error, suggesting the use of Node.js for web
scraping. Nevertheless, programmers might also need to visualize
the scraped data on a self-hosted website, which necessitates web
scraping with a server-side rendering front-end JavaScript frame-
work. As a result, programmers might find themselves ensnared in
a debugging rabbit hole [32, 58], devoid of the guidance that web
searches offer in terms of evaluating the credibility and suitability
of particular answers [52].

Prior work has also incorporated information retrieval tech-
niques into the generation process of LLMs [23], offering access to
real-world and up-to-date information. Our work believes program-
mers’ active involvement in the information-seeking and sensemak-
ing process is essential for them to iterate on prompts or search
queries in their pursuit of the most suitable results. Therefore,
further investigation is warranted to explore the intersection, chal-
lenges, and requirements when interacting with both web search
and generative AI.

2.3 AI-assisted Decision Making
AI-assisted or human-AI decision-making has been explored in
various contexts with a broader goal of evaluating, understanding,
and enhancing the human experience and performance in decision-
making tasks [20]. These studies have examined different decision-
making tasks, various techniques to improve performance [21, 29,

31], and diverse evaluation metrics to assess both tasks and AI [41,
47]. In investigating the decision-making stages of programmers
when interacting with retrieval models and language models, we
discerned that various factors influencing programmers’ decisions
coincided with existing research in the field, such as familiarity
with the domain [8]. Our work aims to be the first exploration of
programmers’ decision-making stages during information-seeking
using both tools. We anticipate that future research will explore
deeper into evaluating comprehensive metrics and strategies to
enhance programmers’ decision-making in these stages.

3 INTERVIEW STUDY
To gain insights into the practices employed by programmers, chal-
lenges and factors in their decision-making, we conducted retro-
spective interviews with experienced programmers.

3.1 Participants and Procedure
We recruited eight participants (5males, 3 female; ages 24−29, 𝑀 =

26.8, 𝑆𝐷 = 1.26) through purposive sampling [11]. In our recruit-
ment process, we sought participants experienced in programming
and using LLM-driven code generation tools. Eligibility screening
involved a pre-test survey that assessed participants’ self-reported
programming experience on a 5-point scale [1: very inexperienced;
5: very experienced], years of programming experience, and self-
reported familiarity with LLM-driven code generation tools (Pre-
test survey in Appendix A). All recruited participants reported
having more than four years of programming experience (𝑀 = 5.43
years, 𝑆𝐷 = 1.12) and were confident in their programming ex-
periences (score 𝑀 = 4.29, 𝑆𝐷 = 1.08), familiar with LLM-code
generation tools (score 𝑀 = 4.41, 𝑆𝐷 = 0.37), and regularly used
the LLM-code generation tools (𝑀 = 12 times/week, 𝑆𝐷 = 4.19).

Participants were compensated with 20 CAD for a 45-minute
interview session. We first asked each participant to provide a
minimum of three recent examples of their ChatGPT usage for
programming problem-solving, including instances involving web
search as part of the process, to encourage participants to reflect
on their utilization of both web search and generative AI. We then
asked about challenges they faced when interacting with both tools,
explored scenarios involving the combined usage, and inquired
about their thought processes throughout the information-seeking
process (Interview Questions in Appendix A.1).

All interviews were audio-recorded and subsequently automati-
cally transcribed [1] into written text. We analyzed the interviews
using thematic analysis [6], employing both inductive and deductive
approaches. After conducting interviews with eight participants,
two researchers in the team independently conducted the initial
analysis in theme identification related to challenges, decision-
making stages, influential factors, and knowledge extraction. The
agreement on factors of the three decision-making stages was quan-
tified using inter-rater reliability, reaching 84%. For knowledge
extraction, the inter-rater reliability was calculated at 92%, using
Cohen’s kappa. After this initial coding, a collaborative session
involving the research team ensued, employing an open coding
approach [9] for further refinement and categorization. Three it-
erations of discussions with the research team were conducted to
address any discrepancies in coding and theme categorization. The
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collaborative efforts culminated in achieving 100% agreement on
the identified themes.

3.2 Collected Data
All participants provided at least three example scenarios in which
they employed both web search and generative AI for information-
seeking and problem-solving. In the majority of scenarios (26 out
of 28), participants engaged in more than two rounds of iterations
involving both web search and prompting, with two cases involving
only one web search session and one round of prompting.

Regarding the tasks participants undertook, we identified 21
out of 28 of them as open-ended tasks where participants did not
require specific approaches to solve them. Among these, 9 pertained
to exploratory data analysis and modelling tasks, 5 involved front-
end development, 4 related to data mining and web scraping, and
the remaining 3 concerned server-related tasks.

4 CHALLENGES
Results from the interview study indicate that programmers re-
quire assistance in making informed decisions about which tool
to use (C1), determining which results to extract and apply (C2),
and translating results into concrete search queries or prompts for
subsequent iterations (C3).

4.1 C1 - Lack of Guidance to Determine Tool
Selection and Integration

In the majority of scenarios presented by participants, either web
search or generative AI was seen as a fallback to the other when
each failed. For example, P6mentioned, “I would try using web search
when ChatGPT kept giving me the wrong answer.” There were also
several scenarios where combining both tools produced the most
favourable outcomes, as “they each possessed their strengths.” -P2. Ad-
ditionally, participants did not report explicit metrics to determine
which tool should be used next, stating they “cannot anticipate how
the results will appear” -P1 or “what knowledge I [they] will gain” -P3
in the current round. The choice of what approach to try next still
relies on trial and error. Therefore, it is relevant to comprehend the
factors that influence the choice and offer programmers guidance
on which tool to use in various circumstances.

4.2 C2 - No Scaffolding to Extract Information
from Results

Most participants have developed their own strategies for under-
standing and extracting information gained from either generated
results or web search results. However, the majority of participants
(7 out of 8) did not mention specific metrics to evaluate the appropri-
ateness of the results. For instance, P2 stated that the appropriateness
of generated results was mostly based on “experience” and “when
the results are similar to what I [they] expected”. In most scenarios,
participants were unable to explicitly express the sources of the
knowledge they extracted from. For instance, P4 mentioned, “I did
write a new prompt based on the knowledge I gained from web pages
I visited, but I could not tell exactly where it is from.” This highlights
the need for provenance tracking for externalizing programmers’
information-seeking process, consistent with prior research [37].

4.3 C3 - Difficulties in Adapting Results
between Search and Generative AI

All participants reported difficulties in switching between the two
tools due to the lack of understanding regarding “the exact differ-
ences” -P5 between them. Participants often struggled with translat-
ing results from one format to another to derive “the best outcome
from both inputs.” -P5 Some (3 out of 8) also explicitly expressed a
desire for a more seamless integration of both tools. P4 suggested
that integrating web search windows into the code editor could help
them “focus on iterating the code generation,” viewing web search as
a “supplementary means to enhance generation.” -P7 This suggests a
shared interest among participants in a more streamlined workflow
for efficient generation with external resources.

5 DECISION-MAKING STAGES
To summarize the activities of programmers during the information-
seeking process, we outline three decision stages that programmers
encounter, each associated with the challenges mentioned above
(see Fig. 1):
1. The Selection stage, during which programmers choose between

the two available tools (C1).
2. In the Extraction stage, programmers assess whether to utilize

implicit or explicit knowledge (C2).
3. During the Translation stage, programmers transform their in-

ternal knowledge into natural language queries or prompts (C3).

5.1 Selection Stage
We identified seven major factors that influence programmers’ de-
cisions on which tools to use in each iteration.

5.1.1 Familiarity with the Domain. Participants use web searches
to familiarize themselves with how to construct their prompts,
particularly when they are not familiar with the domain. In such
scenarios, participants understand that the results generated by AI
may not provide the answer, and they “fear that I [they] do not possess
the knowledge to verify correctness.” -P1. Conversely, participants
tended to employ generative AI when they were more familiar with
the task at hand, such as using APIs they may have forgotten or
implementing detailed algorithms.

5.1.2 Clarity of Goals. Participants generally turned toweb searches
when their goals were unclear and less defined. In such situations,
they struggle to “determine which keywords are appropriate” -P6
and which approaches to take. The diversity of web search results
offers them a better understanding of potential solutions. Once
the problem becomes more well-defined, participants prefer to use
generative AI, as their primary objective at that point is to “find
the most aligned [generated] results.” -P1. Another condition that
leads participants to opt for generative AI over web search is when
they believe that the problem is well-defined and has been thor-
oughly discussed in the past. P5 explained, “I believe this problem
has enough solutions being trained as data to the [AI] model.”

5.1.3 Repetition of Results. Participants often find themselves trapped
in a debugging cycle where they continuously iterate on the prompt
and repetitively receive incorrect results. Previous research has re-
ported this issue when users repeatedly receive results that do not
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Figure 1: Three decision-making stages with key factors influencing these decisions and the challenges associated with them.

align with their intentions, causing them to struggle to find the
right terms to prompt the LLM. The majority of participants (6 out
of 8) mentioned that they would fallback to web searches when
they realized they were “stuck in the loop.” -P2 P6 elaborated, “I will
still try a few times if the [AI-generated] results do not match before
turning to the web search.”

5.1.4 Credibility and Diversity. Participants believe that by glanc-
ing through the appropriateness of multiple search results, they can
easily “identify the keywords to use for prompts” -P8 and determine
the “overall approach they should take” -P3 to solve the problem,
which echos prior research [12, 30]. Four participants mentioned
that they would use web searches to validate the correctness of
the generated results before applying them. They suggested that
web searches provide “more detailed explanations from different as-
pects” -P3 and provide additional signals for assessing credibility,
such as upvotes on StackOverflow.

5.1.5 Serendipity and Luck. While we observed that most circum-
stances begin with a web search when the problem is vague, we
also noticed several scenarios where participants opt for generative
AI in the hope that it might opportunistically provide the final re-
sult. This finding echoes previous research that uncovered similar
behaviours [33, 58], similar to opportunistic programming [5].

5.1.6 Up-to-dateness of Information. The timeliness of informa-
tion is usually considered a crucial aspect of resource credibil-
ity [26, 30, 51]. Participants reported that they tend to opt for web
searches when they require the most up-to-date results, particularly
when they seek the latest documentation for packages or libraries.
However, participants pointed out that the overall approach they
follow does not necessarily have to be up to date; instead, only
the low-level code implementation requires currency. For instance,
when P6 was working on creating a responsive design, the high-
level strategy remained consistent, but the low-level code required
updates to align with current browser capabilities (e.g., specific CSS
properties for responsiveness).

5.1.7 Customizability and Adaptability. When adapting solutions
back into their programs, all participants relied on generative AI.
They preferred this approach because of the customizability and
adaptability of the generated results. P5 explained that “GPT kind
of combines solutions for you,” and P7 mentioned that “I do not
have to change the parameters or variables.” However, two partici-
pants voiced concerns about overconfidence, as they occasionally
bypassed the validation phases and overlooked inaccuracies.

5.2 Information Extraction Stage
At this stage, programmers must discern which results are useful for
the next iteration. We identified two relevant factors.

5.2.1 Role of Early Iterations. All participants reported that the
results from the first few iterations are not worth reading in detail,
especially when the problem is vague or relatively complex. The
primary goal of these initial iterations is to “narrow down the scope
[of the solution]” -P6 and “define the problem domain.” -P1. Most par-
ticipants (7 out of 8) also mentioned that these initial rounds serve
to understand whether the search query or prompt can provide re-
sults in the “right direction.” -P7. Thus, participants need to quickly
skim through either the search results or the generated content
to identify any misalignment with their intentions. For example,
P2 asked the generative AI to visualize a dataset in a bubble chart
with a prompt like “Scatter plot with some dots are larger [...].” The
results showed a scatter plot where the marker size changed. P2
skimmed through the visualization part in the step-by-step tutorial
and realized that implementing a scatter plot might be too complex.
Participants then had to decide whether to switch to another tool
or continue iterating to obtain a more aligned solution.

5.2.2 Extract Text, Keywords, Gist, or Tacit Knowledge. We iden-
tified four major elements that programmers reused and carried
forward to the next iteration through iterative open coding. At
the most concrete level, participants often directly copy-pasted
extracted •text from results either into the search query or as the
context of the prompt. This was especially common when search
results were lengthy, and participants preferred not to organize
them themselves. When iterating on the prompt or search query it-
self, most participants (6 out of 8) derived •keywords from previous
iterations and used them to guide the direction of the next solutions.
In certain instances, participants engaged in the translation of the
gathered insights, represented as the •gist, which amalgamated
information from multiple solutions. These gists primarily encap-
sulate the general directions indicated by the current prompt or
query. The importance of these curated gists lies in their role in
evaluating the alignment of participants’ intentions with the mod-
els. These insights are forwarded to the next round without direct
replication of specific segments from the results. This approach
was evidenced when participants started another round right after
scrolling through search results without clicking on any pages. In
the most abstract levels, participants applied implicit •knowledge
gained from the results. These knowledge refer to what program-
mers have learned or derived from the foraging process, including
insights into effective problem-solving strategies, the identification
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Figure 2: A process model describing interactions between programmers and search/generative AI.

of optimal coding practices, a deeper understanding of system archi-
tectures, and the acquisition of domain-specific knowledge crucial
for informed decision-making in software development. However,
they did not always apply it directly to the next round; instead, it
was sometimes more “useful when verifying the next results.” -P8.

5.3 Knowledge Translation Stage
In the final stage of each iteration, programmers must decide how to
translate their knowledge into text, whether it be a search query or a
prompt for generative AI. We have identified three quandaries that
programmers should weigh as they trade off various considerations.

5.3.1 Exploring vs. Exploiting. The most common dilemma is the
decision of whether to persist with iterations on the current topic
or explore a wider range of topics. This finding aligns with the
exploration and acceleration modes discovered by Barke et al [2].
Participants either rewrote the entire prompt or query to ask dif-
ferent questions or refined the existing prompt or query to dive
deeper into the same domain. The challenge arises when program-
mers are uncertain “if the information is sufficient” -P7 for either
generative AI or crafting web search queries. Programmers might
proceed to the next exploration without fully grasping the solution.
Consequently, they encounter difficulties in tracing back to search
or prompt histories without analytical provenance [34, 36, 55].

5.3.2 Supplementing vs. Modifying. Participants have the option
to either add results into the prompt or query as context or directly
modify the original prompt or query. The former is more common
when programmers have clearer intentions in mind, while the lat-
ter is employed when they are still in the phase of adjusting the
direction of information seeking. For example, P4 sought informa-
tion about implementing an API in the Next.js framework using
generative AI. Initially, P4 tended to modify the prompt to under-
stand where to implement the code and the differences between
code versions. After deciding on approaches, P4 then pasted all the
documentation and tutorials as context for AI to generate results.

5.3.3 Translating Now vs. Reserving for Later. Similar to previous
research [32], which suggests that programmers often set aside
some generated results for later use, our findings indicate that
several participants (5 out of 8) may not immediately apply the
knowledge acquired in one round to the subsequent round. Rather
than a linear chain of knowledge, this process resembles a more
intricate tree diagram, with various branches and connections as
participants navigate and adapt their strategies. Participants can
revisit and apply acquired knowledge later after exploring different
branches. For instance, they might explore one branch, then switch
to another, and eventually, go back to the first branch to combine
insights for a more comprehensive solution.

6 TOWARDS A PROCESS MODEL FOR
PROGRAMMER-SEARCH/GENERATIVE AI
INTERACTION

When interacting with both web search and generative AI, pro-
grammers face challenges at each decision stage, particularly in
selecting the tool to use, determining which information to extract,
and translating information into concrete text. Prior research has
described the stages of information foraging [40, 42, 50], offered
frameworks for determining information appropriateness [17, 26],
and explored cognitive models for translating vague goals into nat-
ural language prompts in AI-driven systems [35, 49, 57]. However,
without a clear understanding of the synergy between these two
tools, current designs often focus on one or the other individually
instead of considering them as a whole. While web search has been
integrated further into generative AI [23], current tools have not
fully taken into account the interaction among information foraging
loop and the value of the human cognitive thought process.

To help guide future design, we summarize our findings in the
form of a process model that enables parallel interactions with web
search and generative AI. This model unifies our insights and those
of prior studies, including principles of the sensemaking foraging
loop [40] and Norman’s seven stages of activities [35] (see Fig. 2)
to depict decision-making iterations. The flow begins with a Goal,
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where programmers identify their problems and tasks. In the pursuit
of goals, programmers then articulate Intentions for addressing
them. For instance, when aiming to classify the Iris dataset, pro-
grammers dissect the problem into selecting an appropriate model
and outlining the training and evaluation procedures. They then
either leverage web searches or generative AI systems as Actions.
We termed this decision point as the Selection stage, which involves
choosing the most suitable tool for the given context.

Upon executing their actions, programmers receive a list of
search results or AI-generated content. Akin to the foraging loop’s
Understanding step, they analyze and interpret these results, iden-
tifying essential information for Extraction. Continuing with our
example, a programmer might encounter various model sugges-
tions in their search results, select the keyword “logistic regression”,
and delve deeper into this specific approach. The Extraction stage
involves distilling information from the results, encompassing ex-
plicit •text, relevant •keywords, the •gist from the overall results,
and abstract •knowledge gained during the process.

Programmers thenOrganize this acquired knowledge, preparing
it for the Translation stage. This final decision point involves refor-
mulating the information into a new search query or AI prompt.
For example, they might integrate steps from a web tutorial with
code examples to guide generative AI. These activities among the
Gulf of Evaluation are essentials to determine the next step in the
iteration. It can lead back to the Goal stage, particularly when the
initial objective is broad and requires refinement, or return to the
Intention stage, where programmers refine their mental models
for problem-solving. This cyclical process dynamically adapts to the
evolving needs and understanding of the programmer, facilitating
effective use of both web search and generative AI tools.

Incorporating the Sensemaking Loop.While this study did
not directly investigate the sensemaking process, it is noteworthy
that three participants mentioned the importance of note-taking to
organize their collected information. This finding aligns with prior
research indicating that programmers engage in a sensemaking
loop before embarking on the next iteration of information forag-
ing [34, 40, 42, 50]. Incorporating this sensemaking process into the
process model typically occurs during the evaluation process, start-
ing from the results. Programmers articulate the knowledge they
have internalized before making adjustments to their intentions or
goal. Future research could explore how programmers externalize
their curated knowledge to generate results with context. Addi-
tionally, investigating how sensemaking influences the proposed
decision stages, with the potential to enhance the translation stage,
would be valuable.

Implications for Reconciling both Tools. Our study aims
to serve as an exploratory investigation to shed light on the chal-
lenges, practices, and decision-making processes across the stages
of information-seeking. We decompose the information-seeking
process into three main decision-making stages. Future design en-
deavours can delve deeper into these three stages, examining the
detailed needs required to assist programmers in making informed
decisions throughout the information-seeking process. This would
be particularly beneficial in terms of enhancing the controllability of
the process, enabling programmers to steer the system toward their

goals. Overall, the insights gleaned from this study can inform fu-
ture designs by advocating for the incorporation of the programmer-
foraging process into the design of retrieval augmented generation.

7 LIMITATIONS AND FUTUREWORK
While valuable insights were gained from the interviews about
programmers’ decision-making during web information foraging,
we note the limitations of this method. The decision to opt for
retrospective interviews aimed at gaining in-depth insights into
programmers’ experiences during information foraging stages, en-
abling a qualitative exploration of cognitive processes [7]. Thus,
we encouraged participants to share multiple cases, enhancing our
understanding of diverse web foraging scenarios and providing a
comprehensive perspective on the dynamic nature of these pro-
cesses. Acknowledging the limitations of interviews in capturing
micro-decisions prone to errors and biases, future work could inte-
grate an observation study with think-aloud protocols or activity
logging in a diary study for a more quantitative analysis.

Furthermore, while our study provides insights into how pro-
grammers can actively participate in the retrieval process as infor-
mation retrievers, we also recognize the limitations of this approach
compared to current human-in-the-loop retrieval augmentation
generation methods and their potential necessity in the future. A
notable difference is that in those approaches, humans are involved
by annotating the usefulness of the retrieval results, whereas our
approach involves humans directly in the entire retrieval process
throughout different stages.

8 CONCLUSION
In this paper, we investigated the intersection of web search and
generative AI in programming, uncovering key challenges and
decision-making stages. Our findings from interviews with experi-
enced programmers reveal a nuanced relationship between these
tools, highlighting the need for a synergistic approach rather than
treating them as alternatives. We then propose a process model that
integrates web search and generative AI into programming work-
flows, emphasizing the importance of understanding, extracting,
and translating information across tools.
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A SURVEY AND INTERVIEW QUESTIONS
ELIGIBILITY SCREENING SURVEY
1. How confident are you in your overall programming ex-

perience?
1: Very Inexperienced
2: Inexperienced
3: Moderately Experienced
4: Experienced
5: Very Experienced
2. Howmany years of programming experience do you have?

years
3. How familiar are you with AI code generation tools (e.g., GitHub

Copilot, ChatGPT)?
1: Not Familiar
2: Slightly Familiar
3: Moderately Familiar
4: Familiar
5: Very Familiar
4. Over the past few weeks, how often did you typically employ AI

code generation tools such as OpenAI’s Codex, GitHub Copilot,
or ChatGPT for your programming tasks? (e.g., times per week)

A.1 Semi-Structured Interview Questions
Programming Workflow and Tool Integration
1. Programming Workflow Integration: Can you describe your

typical programming workflow, particularly emphasizing how
you utilize code synthesis tools like Copilot and web search in
this process?

2. Decision Making between GPT and Web Search: How do
you decide when to use tools like GPT and when to resort to
web search during your coding process? Could you provide a
specific example illustrating this decision-making process?

Information Seeking and Evaluation in
Programming
1. Information Requirements:When you begin looking for in-

formation during programming, what specific types of informa-
tion are you usually seeking? (e.g., syntax clarification, algorith-
mic approaches, best practices)

2. Assessment of Information Quality: What criteria do you
use to determine whether a search or generated result is good
enough for your needs? What factors are important to you?

3. Determining Importance of Information: What kind of in-
formation do you consider as most important from the generated
or search results?

4. Synthesizing Information from Multiple Sources: Can you
describe how you synthesize or combine information from dif-
ferent sources (like Copilot, web search, forums)? How do you
resolve conflicts or discrepancies in information?

5. Long-term Information Retention:When you find particu-
larly valuable information, how do you ensure its retention for
future use? Do you have a system for organizing or bookmarking
useful resources?

Challenges and Limitations of Both Tools
6. Challenges and Limitations: Could you discuss some chal-

lenges or limitations you’ve encountered with both tools? How
does the other tool help in overcoming these challenges?

7. Web Search Efficacy: Can you provide an example where web
search helped you gain a better understanding of a programming
concept or language feature that tools like Copilot alone couldn’t
provide?

8. Future of GPT andWeb Search: In your opinion, do you think
the advancement of technologies like GPT-4 with internet and
web scraping access could eventually replace traditional web
search for programming-related queries?
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